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ABSTRACT 
 
Modern geospatial databases are becoming increasingly complex, with multiple types of information (e.g. imagery, maps, 
vector data, video, and text), huge volumes of data (e.g. numerous satellite images continuously captured in the span of a 
mission), and distributed storage (e.g. various servers storing different types of information). Furthermore, spatiotemporal 
analysis is also becoming more complicated, with analysts making use of diverse datasets to make complex decisions. 
These trends make geospatial queries increasingly complex and challenging.  
 
In this paper we introduce non-linear correlations within geospatial databases to better handle user queries in distributed 
environments. In order to support queries, datasets are typically indexed according to their metadata information. For 
example, an image may be indexed according to its metadata parameters (e.g. area, scale, time, sensor). This results in 
defining a multidimensional (MD) space and indexing individual datasets in this space. Each dimension of this space 
corresponds to an individual parameter in the metadata description. 

 
1    INTRODUCTION 
 
A major challenge in geospatial databases is the successful retrieval of information sources for further analysis. This 
operation can be seen as an extension of information retrieval in multimedia databases (Faloutsos et al 1994, Faloutsos 
1996, Kingsley 1996, Lombardo and Kemp 1997, Subrahmanian 1998). For example, a user might request an aerial 
photograph with specific attributes, some of which might be metric (e.g. resolution, temporal instance) and some qualitative 
(e.g. infrared, mission number). With quantitative attributes a common approach would be the creation of a multi-
dimensional feature vector where each dimension would correspond to a metadata value (Hjaltason and Samet 1995, 
Roussopoulos et al 1995, Papadopoulos and Manolopoulos 1997, Ciaccia et al 1998, Berchtold et al 2000). 
 
Queries using such multidimensional (MD) indices commonly follow some sort of a nearest neighbor-based approach: the 
query defines a point in this MD space and returns the datasets whose indices are nearest to the query point. This 
comparison is done by measuring the Euclidean distance between the MD vectors of the Query and the Database: 

 
VQ = [m1q, m2q, m3q, …, mnq] 

VDB = [m1db, m2db, m3db, …, mndb] 
 

Edistance = {(m1q - m1db)2 + (m2q – m2db)2  +(m3q – m3db)2 + …+(mnq – mndb)2  }0.5 

 
The smaller the distance the highest the correlation between the two vectors. In more sophisticated approaches the user can 
predefine weights for each dimension. In this case the result would be: 
 

Edistance = {W1 (m1q - m1db)2 + W2 (m2q – m2db)2  + W3 (m3q – m3db)2 + …+ Wn (mnq – mndb)2  / ΣW}0.5 

 
This approach allows the user to predefine the importance of each dimension, but still within each dimension the Euclidean 
distance is the basis of the similarity. These distances depend on the underlying assumption that orthogonality exists 
between dimensions as well as that MD space is isotropic. This is not the case though in our MD space.  



International Archives of Photogrammetry and Remote Sensing, Vol. 34, Part 4/W5 
“Challenges in Geospatial Analysis, Integration and Visualization“, Athens, Georgia, USA 29-31 October, 2001 

 

 2

In this paper we propose an alternative way for expressing correlation within each dimension of the qualitative space. This 
is accomplished through a set of continuous functions, namely correlation functions. Following we introduce the notion of a 
correlation function and we provide some general mathematical classes. Then we present functions that depend only on the 
difference within each dimension followed by functions that depend on the actual values. We conclude this paper with a 
summary of our findings and a glimpse of potential future work.  

 
2    CORRELATION FUNCTIONS 
 
We propose a new approach to facilitate the non-linearity within each dimension. We keep the weights to allow the user to 
predefine the importance of each dimension but we substitute the Euclidean distances with correlation functions (CF) in 
each dimension. So in our case the obtained result would be: 
 

Correlation {VQ ,VDB} = {W1 * CF1[m1q , m1db] + W2 * CF2[m2q ,m2db]  + 
W3 * CF3[m3q , m3db]  + …+ Wn * CFn[mnq , mndb] }/ ΣW 

 
The correlation functions can be mathematical functions such a binary, gaussian, sigmoidal, etc. or arbitrary ones (e.g. 
resulting from a neural networks analysis). Also the correlation functions can depend only on the difference between query 
and database value in that dimension, or on the actual values described above. 

As an example we could examine the “temporal granularity” dimension. When the DB value is smaller than the query then 
the correlation is 100%. When it is larger than the query the correlation depends on the query value, so when we request 
high resolution information (small temporal granularity value, say 1 min) then the correlations should more rapidly decrease 
than when we request low resolution information. Cases like this, that could not be addressed through an Euclidean distance 
approach are easily expressed through our functions. Here we should mention that these functions are just a subset of 
potential others since the users can define custom functions at query time or even the system itself might be able to grasp 
these relations through a relevance feedback training approach. 

 
2.1 Delta dependent functions 
 
First we present functions that depend only on the delta value within each dimension, in essence depend on 
 ∇(mnq , mndb) = (mnq – mndb). In this general class of functions we could identify four mathematical functions being used in 
our approach: step, linear, gaussian, and sigmoidal functions.   
 
• Step Functions  
 
With this type of class a binary step function is defined based on a threshold value. This function shows that up to a certain 
point query and DB values are completely correlated and beyond that they are not related at all (Fig. 1). An example could 
be the “temporal value” where we create a binary buffer zone around the query value. Note that the step in constant 
throughout this mapping (e.g. 15 min). 
 

  
 

Figure 1. Delta dependent Step Function 
 

Figure 2. Delta dependent Linear Function 
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• Linear functions 
 
Through this set of functions we are able to provide compatibility with the traditional Euclidean distance approach. This is 
done by defining CFi as a simple distance between the two vectors (DB and Q respectively). As an example we could use 
this function to correlate the “temporal value” dimension. In this case we assume uniform linear distribution through that 
dimension. The graph in figure 2 describes the correlation in that dimension. 
 
• Gaussian functions 
 
Another function class that can be used is a gaussian distribution (Fig. 3). Close values result to high correlations where the 
further away we get the less correlated they are in a non-linear way. As an example we could use this function to correlate 
again the “temporal value” dimension. By using this function we create a non-linear gradual mapping between DB and 
Query. 
 

  
 

Figure 3. Delta dependent Gaussian Function 
 

Figure 4. Delta dependent Sigmoidal Function 
 
• Sigmoidal Functions  
 
With this type of class a non-linear distribution is assumed for one half of the graph while a plane is assigned for the second 
half. A meaningful example for this function would be the “spatial granularity” dimension. If the spatial resolution of the 
database is better than the query’s then a 100% correlation is assigned. If it is worst then a gradual correlation is returned. 

 
2.2 Value dependent functions 
 
In this subset of correlation functions we introduce cases where the difference (mnq – mndb) is not sufficient to describe the 
correlation in that dimension. We make use of the actual (mnq , mndb) values. The necessity of this kind of functions is 
shown below.  
 
• Step functions with variable width 
 
In this case we allow the user to specify in a dimension a variable step function, by assigning a scaled-width factor based on 
the Query Dimension Value (Fig. 5). This function implies that the width closer to the origin is much smaller than further 
away. By using this function we can express uncertainty within our model. Assuming that measurements closer to the origin 
were more reliable then a smaller search (high correlation) window should be assigned. Here we should note that the step 
functions are not limited to the one shown in figure 5, but can be substituted by others depending on the case (e.g. an 
elliptical-shape plane might be more appropriate sometimes). 
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• Gaussian functions with variable sigma 
 
This function type allows the same flexibility with the above example, only it provides a gradual slope of correlation 
change. This way a threshold value is not necessary and a more meaningful (statistically) result can be obtained. 
 

  
 

Figure 5. Value dependent Variable Step Function 
 

Figure 6. Value dependent Variable Sigma Gaussian Function 
 
• Sigmoidal functions with variable slope 
 
A “spatial resolution” example could help understand the use of such function. Assume that each axis represent the pixel 
size in meters both the Query (y axis) and the Database (x axis) domain. If the query would be “return all images with pixel 
size 20 meters and a confidence of 80%” following the mapping of this function all values < 20m would be returned since 
better resolution is acceptable. By examining the other half of the graph we would see that pixel size up to 24 meters would 
have a confidence more than 80%. What is important here is the difference of 24-20 =4m. 
Now let’s assume that the query is rephrased into  “return all images with pixel size 60 meters and a confidence of 80%”. In 
this case all images with pixel size <60 will be returned as expected. But due to the variable slope of the sigmoidal images 
up to 70m will be returned. In this case the difference would be 70-60 =10m for the same confidence percentage. This 
variable difference is desirable since the finer the resolution (smaller pixel size) the smaller the acceptable margin of error 
and the other way around. 
Another example would be the “temporal granularity” dimension. In this case as well the correlation range closer to the 
origin is much smaller than as we go further away. So when we are dealing with seconds the acceptable return range is 
much smaller than when we are querying on months. 
 

 
 

Figure 7. Value dependent Variable slope Sigmoidal Function 
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Here is the mathematical expression of this sigmoidal correlation function, where k is a slope rate constant: 
 
 
                                  1 if m1q >= m1db 
CF1 [m1q , m1db] =  
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3    CONCLUSIONS 
 
In this paper we addressed the modeling of non-linear correlations that exist within each dimension (metadata attribute) in a 
GIS information source database. This is accomplished by the use of correlation functions instead of an Euclidean distance 
calculation. The advantages of our approach were shown through a variety of examples. The computational burden is 
minimal since we express the correlation through continuous functions, while the benefit is substantial in the expressiveness 
of our model. Further expansion of this model would include correlations in qualitative dimensions (e.g. plane type) through 
the use of a correlation matrix, a discrete representation in this case. Also the expansion of this model will facilitate 
correlations between dimensions (e.g. sensor type and resolution) or groups of not directly comparable dimensions (e.g. 
“How close is an aerial photograph to a DEM ?”). Finally a training process can be introduced so that the correlation 
functions will result from a relevance feedback operation (e.g. neural network training). 
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